Ensemble multi-objective biogeography-based optimization with application to automated warehouse scheduling
نویسندگان
چکیده
This paper proposes an ensemble multi-objective biogeography-based optimization (EMBBO) algorithm, which is inspired by ensemble learning, to solve the automated warehouse scheduling problem. First, a real-world automated warehouse scheduling problem is formulated as a constrained multi-objective optimization problem. Then EMBBO is formulated as a combination of several multi-objective biogeography-based optimization (MBBO) algorithms, including vector evaluated biogeography-based optimization (VEBBO), non-dominated sorting biogeography-based optimization (NSBBO), and niched Pareto biogeography-based optimization (NPBBO). Performance is tested on a set of 10 unconstrained multi-objective benchmark functions and 10 constrained multi-objective benchmark functions from the 2009 Congress on Evolutionary Computation (CEC), and compared with single constituent MBBO and CEC competition algorithms. Results show that EMBBO is better than its constituent algorithms, and among the best CEC competition algorithms, for the benchmark functions studied in this paper. Finally, EMBBO is successfully applied to the automated warehouse scheduling problem, and the results show that EMBBO is a competitive algorithm for automated warehouse scheduling. & 2015 Elsevier Ltd. All rights reserved.
منابع مشابه
Multi-objective and Scalable Heuristic Algorithm for Workflow Task Scheduling in Utility Grids
To use services transparently in a distributed environment, the Utility Grids develop a cyber-infrastructure. The parameters of the Quality of Service such as the allocation-cost and makespan have to be dealt with in order to schedule workflow application tasks in the Utility Grids. Optimization of both target parameters above is a challenge in a distributed environment and may conflict one an...
متن کاملMULTI-OBJECTIVE ROUTING AND SCHEDULING IN FLEXIBLE MANUFACTURING SYSTEMS UNDER UNCERTAINTY
The efficiency of transportation system management plays an important role in the planning and operation efficiency of flexible manufacturing systems. Automated Guided Vehicles (AGV) are part of diversified and advanced techniques in the field of material transportation which have many applications today and act as an intermediary between operating and storage equipment and are routed and contr...
متن کاملOptimizing the Static and Dynamic Scheduling problem of Automated Guided Vehicles in Container Terminals
The Minimum Cost Flow (MCF) problem is a well-known problem in the area of network optimisation. To tackle this problem, Network Simplex Algorithm (NSA) is the fastest solution method. NSA has three extensions, namely Network Simplex plus Algorithm (NSA+), Dynamic Network Simplex Algorithm (DNSA) and Dynamic Network Simplex plus Algorithm (DNSA+). The objectives of the research reported in this...
متن کاملSolving a New Multi-objective Unrelated Parallel Machines Scheduling Problem by Hybrid Teaching-learning Based Optimization
This paper considers a scheduling problem of a set of independent jobs on unrelated parallel machines (UPMs) that minimizesthe maximum completion time (i.e., makespan or ), maximum earliness ( ), and maximum tardiness ( ) simultaneously. Jobs have non-identical due dates, sequence-dependent setup times and machine-dependentprocessing times. A multi-objective mixed-integer linear programmi...
متن کاملA Multi-objective optimization model for project scheduling with time-varying resource requirements and capacities
Proper and realistic scheduling is an important factor of success for every project. In reality, project scheduling often involves several objectives that must be realized simultaneously, and faces numerous uncertainties that may undermine the integrity of the devised schedule. Thus, the manner of dealing with such uncertainties is of particular importance for effective planning. A realistic sc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eng. Appl. of AI
دوره 44 شماره
صفحات -
تاریخ انتشار 2015